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Traffic and congestion phenomena belong to our everyday experience. Our traffic sim-
ulation software www.traffic-simulation.de allows for controlling traffic and creating
traffic jams in order to understand the principles behind traffic breakdowns and how to
resolve them. The fast visualization illustrates how traffic jams can be seen as collective
phenomena with waves propagating backwards from the bottleneck, and standing waves
pinned at the beginning of the bottleneck.

The simulator offers an intuitive and interactive way of playing with the factors in-
fluencing the collective dynamics of traffic like initial and boundary conditions, inhomo-
geneities of the road network (onramps, offramps, lane closures, uphill grades), traffic
regulations (speed limits, traffic lights, etc.), and the parameters describing the driving
and lane-changing behavior of single vehicles. In the following, we describe the used car-
following model for the acceleration behavior, the lane-changing model and the numeri-
cal procedure to solve the system of coupled non-linear differential equations efficiently.
Finally, the default simulation scenarios are characterized and explained shortly.

1 Modeling Traffic – The Math behind the Simulation

The software uses the Intelligent Driver Model (IDM) to simulate the longitudinal dy-
namics, i.e., accelerations and braking decelerations of the drivers.1 In such models, also
called car-following models, the decision of any driver to accelerate or to brake depends
only on his or her own speed and on the position and speed of the ‘leading vehicle’ imme-
diately ahead. In contrast, lane-changing decisions depend on all neighboring vehicles.
The IDM and a lane-changing model derived from it (cf. Sec. 1.2) completely describe
all immediate actions a driver can do at any time, namely accelerating, braking, and
steering as a response to own preferences and the local traffic environment.

More generally, the car-following and lane-changing models used in the simulator
belong to the class of microscopic traffic flow models, in contrast to macroscopic traffic
flow models describing traffic flow as a fluid in terms of local density and local speed. This
has some analogies in the physics of fluids (liquids and gases): Microscopically, fluids are
described by the interactions of their constituting molecules, and macroscopically, by the
Navier-Stokes equations. Moreover, in both fields, the microscopic dynamics produce
macroscopic emergent phenomena that do not depend on the microscopic details. The
classic examples are the sound waves of fluids and the corresponding traffic waves that
can be investigated by playing with the simulator. In contrast to the fluid molecules,

∗Website www.mtreiber.de
†Website www.akesting.de
1In fact, the IDM has been slightly modified for a ‘cooler’ behavior after cut-ins of other vehicles but this does not

change the general idea.
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the ‘vehicle-driver units’ of the microscopic traffic flow models are active or self-driven
particles [1, 2] also called agents, so these models also also examples of multi-agent
models.

1.1 The Intelligent Driver Model

The Intelligent Driver Model (IDM) is probably the simplest complete and accident-free
model producing realistic acceleration profiles and a plausible behavior in essentially all
(single-lane) traffic situations.2 Its structure can be described as follows:

• The influencing factors (model input) are the own speed v, the bumper-to-bumper
gap s to the leading vehicle, and the leader’s speed vl or, equivalently, the ap-
proaching rate (relative speed) ∆v = v − vl.
• The model output is the acceleration dv

dt chosen by the driver for this situation.

• The model parameters describe the driving style, i.e., whether the simulated driver
drives slowly or fast, careful or reckless, anticipatively or short-sighted, and so on.

The IDM acceleration equation reads as follows:

dv

dt
= afree + aint = a

[
1−

(
v

v0

)δ]
− a
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s
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. (1)

The acceleration dv
dt consists of two parts. The first part for free flow depends only on the

ratio v/v0 between the current and the desired speed producing a smooth acceleration
profile with a maximum given by the model parameter a at zero speed, and a zero
acceleration at the desired speed. The second part (which is always negative) describes
the repulsive ‘social force’ exerted by the leading vehicle. Similarly to the repulsive force
of two equally charged particles, this force is proportional to 1/s2 – with the difference
that the interaction is unilateral: The leader is not ‘pushed’ by the follower. This term
compares the desired gap s∗ to the current gap s. The desired gap

s∗(v,∆v) = s0 + max

(
0, vT +

v∆v

2
√
ab

)
(2)

has a steady-state (‘equilibrium’) term s0 + vT and a dynamical term v∆v/(2
√
ab)

that implements the ‘intelligent’ braking strategy [2]. Notice that, if the actual gap
is approximatively equal to s∗, the breaking deceleration essentially compensates for
the free acceleration part, so the resulting acceleration is nearly zero. This means,
s0 + vT corresponds to the gap when following other vehicles in steadily flowing traffic.
In addition, s∗ increases dynamically when approaching slower vehicles and decreases
when the front vehicle is faster. As a consequence, the imposed deceleration increases
with

• decreasing distance to the front vehicle (one wants to maintain a certain safety
distance),

• increasing own speed (the safety distance increases),

• increasing approaching rate to the front vehicle (when approaching the front vehicle
at a too high rate, a dangerous situation may occur).

The IDM has intuitive parameters with the values used for the simulation summarized
in Table 1. In general, every ‘driver-vehicle unit’ can have its individual parameter set.
For example, trucks are characterized by low values of v0, a, and b, careful drivers drive
at a high safety time headway T , and aggressive (‘pushy’) drivers are characterized by
a low T in connection with high values of v0, a, and b. Often two different types are
sufficient to show the main phenomena.

2For a more detailed description of the IDM we refer to the Chapter 11 of our book [2]. This is freely available from
www.traffic-flow-dynamics.org/res/SampleChapter11.pdf.
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Parameter Car Truck Remark

Desired speed v0 when
driving on a free road

120 km/h 80 km/h
For city traffic, one would adapt the de-
sired speed while the other parameters
essentially can be left unchanged

Desired safety time
headway T when
following other vehicles

1.5 s 1.7 s

Recommendation in German driving
schools: 1.8 s; realistic values vary be-
tween 2 s and 0.8 s, and even below

Minimum bumper-to-
bumper gap s0 to the
front vehicle

2 m 2 m

Kept at complete standstill, also in
queues that are caused by red traffic
lights

Acceleration a in every-
day traffic

0.3 m/s2 0.3 m/s2

Very low values to enhance the formation
of stop-and go traffic. Realistic values are
1-2 m/s2

Comfortable (braking)
deceleration b in every-
day traffic

3.0 m/s2 2.0 m/s2

Very high values to enhance the forma-
tion of stop-and go traffic. Realistic val-
ues are 1-2 m/s2

Acceleration exponent δ 4 4

Table 1: Model parameters of the Intelligent Driver Model (IDM) used in the simulation.

1.2 The Lane-Changing Model MOBIL

Lane changes take place if another lane is more attractive (‘incentive criterion’), and
the change can be performed safely (‘safety criterion’). In our lane-changing model
MOBIL [3] we base both criteria on the accelerations in the old and the prospective new
lanes, as calculated with the longitudinal model (that is the IDM in the simulation).

The safety criterion is satisfied if the IDM braking deceleration −aIDM imposed on
the new follower f ′ of the target lane after a possible change does not exceed a certain
limit bsafe, this means, the safety criterion fulfills

a′ IDM
f’ > −bsafe. (3)

In this formula, the acceleration a′ IDM
f’ stands for the IDM acceleration of the new

follower f ′ caused by the lane-changing vehicle after a prospective change (the dash in
a′ denotes the acceleration after a change).

In order to asses the incentive criterion, we ask whether we, as a driver, obtain some
advantage by a lane change in terms of an increased acceleration. Furthermore, we do
not take the risk of lane changing for a marginal benefit and model this by imposing a
changing threshold ∆athr. Finally, we also include a bias ∆abias to the left or right lanes
caused, e.g., by the desire or need to merge or diverge soon, or simply by the ‘keep-right
directive’ of many European countries. In quantitative terms, the incentive criterion is
satisfied if

a′ IDM > aIDM + ∆athr ±∆abias, (4)

where aIDM and a′ IDM denote the IDM acceleration of the subject driver before and
after the change, respectively.

1.3 Mathematical Structure and Numerical Solution

The mathematical form of the IDM model equations (1) and (2) is that of coupled
ordinary (non-linear) differential equations:

• They are differential equations since, in one equation, the dynamic quantities v(t)
(speed) and its derivative dv

dt (acceleration) appear simultaneously.
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Parameter
Typical
Value

Remark

Max. safe deceleration bsafe 4 m/s2 Must be lower than maximum deceleration of
about 9 m/s2

Threshold athr 0.2 m/s2 Must be below the lowest acceleration ability
(IDM parameter a) of any vehicle type

Bias to the right lane ∆abias 0.2 m/s2 The absolute value must be higher than ∆athr

Table 2: Model parameters of the lane-changing model MOBIL used in the simulation. For manda-
tory lane changes, |∆abias| = 5 m/s2

• They are coupled since, besides the speed v, the equations also contain the speed
vlead = v − ∆v of the leading vehicle. Furthermore, the gap s obeys its own
kinematic equation, ds

dt = −∆v coupling, again, the (time derivative of the) gap to
the leading speed.

• They are non-linear due to the square term and power of δ in Eq. (1) and the
product as well as the maximum condition in Eq. (2). Under suitable conditions
(ring road with an obstacle thrown on the road), the model’s nonlinearity allows
even to simulate deterministic chaos.

Simulation means to numerically ‘integrate’, or, in other words, approximatively solve
the coupled differential equations of the model. Specifically, we consider a finite and fixed
numerical update time interval ∆t, and integrate over this interval assuming constant
accelerations. This so-called ballistic method reads3

new speed: v(t+ ∆t) = v(t) +
dv

dt
∆t, (5)

new position: x(t+ ∆t) = x(t) + v(t)∆t+
1

2

dv

dt
∆t2. (6)

where dv
dt is the IDM acceleration calculated at time t, and x is the position of the

front bumper. For the IDM, any update time step below 0.5 s (or, . T/2, respectively)
will essentially lead to the same result, i.e., sufficiently approximates the true solution.
Strictly speaking, the model is only well defined if there is a leading vehicle and no other
object impeding the driving. However, generalizations are straightforward:

• If there is no leading vehicle and no other obstructing object (‘free road’), just
set the gap to a very large value such as 1000 m. The limit of the gap tending to
infinity is well-defined for any meaningful car-following model such as the IDM.

• If the next obstructing object is not a leading vehicle but a red traffic light or a
stop-signalized intersection, just model these objects by a standing virtual vehicle
of length zero positioned at the stopping line. In order to simulate a transition to
a green light, just eliminate the virtual vehicle.

• If a speed limit becomes effective, reduce the desired speed, if the present value is
above this limit. Likewise, reduce the desired speed of trucks in the presence of
gradients.

Special Case of Stopped Vehicles. For vehicles approaching an already stopped vehicle
or a red traffic light, the ballistic update method as described above will lead to negative
speeds whenever the end of a time integration interval is not exactly equal to the true

3For a discussion of different numerical schemes to solve these equations and why the ballistic method is the most
suited one we refer to the paper [4].
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stopping time (of course, there is always a numerical mismatch). Then, the ballistic
method has to be generalized to simulate following approximate dynamics:

If the true stopping time is within an update time interval ∆t, decelerate at
constant deceleration dv

dt to a complete stop and remain at standstill until this
interval has ended.

Furthermore, it may happen that the actual gap of a stopped vehicle s is slightly below
the minimum gap s0, in which case the IDM would give a negative acceleration, hence a
negative speed in the next time step. In most cases, however, real drivers will just keep
that somewhat too low gap until the leader drives again rather than driving backwards.
Both special cases can be implemented by following rules:4

if v(t) +
dv

dt
∆t < 0, then (7)

new speed: v(t+ ∆t) = 0, (8)

new position: x(t+ ∆t) = x(t)− 1

2
v2(t)/

dv

dt
. (9)

1.4 Boundary conditions

A coupled system of ordinary differential equations does not only need initial conditions
but also boundary conditions. In our simulator, we use two categories:

1.4.1 Periodic boundary conditions

When simulating ring roads and other closed systems, there are no boundary conditions
in the strict sense. However, formally, one has to ‘cut’ the ring at one position which is
then the set of virtual upstream and downstream boundaries. For a ring of circumference
L, this means that xi → xi − L whenever vehicle i exceeds the position x = L, and the
gap for the first vehicle is given by sfirst = xlast − llast − xfirst + L which depends on the
‘last’ vehicle, i.e., that with the smallest value of x.

1.4.2 Open boundary conditions

In contrast to closed roads with periodic boundary conditions that are controlled by the
density, open systems are controlled by the flow, specifically,

• the upstream boundary determines the flow and the system in free conditions,

• the downstream boundary determines the flow in congested conditions.

The implementation of open boundary conditions can be tricky:

• Upstream boundary conditions: Integrate the inflow Qin over the simulation time,
nbuffer =

∫ t
0 Qin(t′)dt′, and, as soon as the vehicle number nbuffer in the upstream

buffer exceeds 1, try introducing a vehicle in the simulation and decrement nbuffer

by 1. In congested conditions, this is not always successful reflecting the fact that
then the downstream boundary counts.

• Downstream boundary conditions: These are not so simple since just taking away
vehicles according to the integrated downstream flow condition brings in artifacts
if the vehicles to be removed have not yet reached the boundary. It is better to
set the speed of the most downstream vehicles (which no longer have a leader) to
the prescribed boundary speed. If the speed is low enough, this allows introducing
congestions via the downstream boundary. For free-flow conditions, the fixed speed
has no influence on the dynamics and corresponds to ‘free boundary conditions’
(vehicles leave the simulation without leader as though the road is free).

4Notice that − 1
2
v2/dv

dt
is greater than zero, if this special case applies.
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2 Simulation Scenarios

In the following, we describe the simulation scenarios, the main user interactions and
observable traffic phenomena.

2.1 Simulation Scenario: Ringroad

This simulation scenario, depicted in Fig. 1), shows multi-lane vehicular traffic in a
closed system (ring road). We simulate two types of vehicles, cars and trucks which are
distinguished by the IDM parameters given in Table 1.

The dynamics depends essentially on the red sliders, namely on the average vehicle
density ρ which is the main control parameter in closed systems, and on the IDM
parameter a characterizing the agility (responsiveness) of the drivers.

• In the standard settings, traffic flow is unstable and backwards moving traffic waves
appear after some time. This is caused by the dense traffic and simultaneously
sluggish driver settings: a follower responds too late to small braking maneuvers
of the leader (caused, e.g., by a lane change) and consequently closes in too much.
In order to re-obtain the desired gap s0 + vT , the follower has to decelerate even
more. The same applies to the next follower, and so on. Eventually, this ‘vicious
cycle’ results into a fully developed traffic wave with a region of stopped vehicles.

• You can click on a vehicle imposing a controlled perturbation to study this mech-
anism.

• For higher densities, several waves appear.

• For densities below 25 vehicles per km and lane, the leader is able to accelerate
before the next follower closes in and the ‘vicious cycle’ is broken: No traffic waves
appear

• The same is true when increasing the IDM acceleration a thereby making the drivers
more responsive: Even developed traffic waves resolve after some time!

• You can also reduce the number of lanes to 1 (‘freeway minus’ symbol) and/or
eliminate the trucks (truck percentage to zero) to realize that neither lane changes
nor driver-vehicle heterogeneity are relevant factors for this mechanism.5

• By dropping a stationary construction vehicle onto the road, you can transform the
travelling traffic waves into standing waves.

• Drop a traffic light onto the road and switch it to green after some time. Observe
that the queue of waiting vehicles does not dissolve instantaneously but from the
front at the same velocity as that of traffic waves

• You can also elongate the road by pulling it into hairpins, figure-of-eight shapes,
and combinations thereof.

As bottomline, we learn from this ring scenario the following:

• Traffic waves always propagate against the direction of the traffic flow at a velocity
of about 15 km/h which does not depend on the system size, the initial or boundary
conditions, the perturbations, or the traffic context (city, country road, freeway,
change the free-flow speed for that). This is a sort of universal traffic flow constant.
It is observed in real-world traffic worldwide (cf. right plot in Fig. 1 from Ref. [5]).

• The outflow of all types of moving downstream fronts of congested traffic (per lane)
is about the same. This includes stop-and-go waves but also dissolving queues in
city traffic when the traffic light gets green. This so-called dynamic capacity is by
typically 10-20 % lower than the static capacity of the road. The resulting capacity

5Cf. the provided documentary video available from https://www.youtube.com/watch?v=azmcu1cn2vg
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Figure 1: Left: Simulation screenshot for an increased density; right: a real-world experiment [5].

drop is the reason why avoiding a traffic flow breakdown is crucial and traffic jams
resolve so slowly.

2.2 Open System Scenarios with Stationary Bottlenecks

The simulator provides four scenarios with open boundaries and several forms of in-
frastructure bottlenecks (Fig. 2): On-ramp, off-ramp, roadworks (lane closing), and an
uphill section.

• With the initial settings of the respective simulation, traffic breaks down at or near
the bottleneck region which, then, triggers upstream propagating traffic waves.

• Once the waves have formed, you can slow down the simulation speed and click at
an entering vehicle to observe how it encounters seemingly ‘phantom’ traffic waves.

• As in the ring scenario, reduced traffic (controlled by the inflow rather than the den-
sity) and a higher driver’s responsiveness will make the waves (but not necessarily
the congestion) disappear.

• Also off-ramps may act as bottlenecks even though traffic leaves the road, so,
naively, one could think of an ‘anti-bottleneck’.

• Change the speed limit in the lane closing scenario and observe that traffic does not
break down at the initial setting (limit 80 km/h) but for higher (and also lower!)
speed limits. Notice the strong capacity drop in this case.

• Even locally changed driving characteristics, e.g., at curves or uphill sections, may
serve as a bottleneck. Reduce the maximum speed a truck can drive at the uphill
section and play with the truck overtaking ban.

• Before a breakdown has occurred, click on a vehicle in the bottleneck region to
apply a disturbance. Notice how this vehicle triggers a breakdown although the
driver may not even notice it!

As bottomline, we learn from these scenarios the following:

• In reality, phantom jams are not really ‘phantom’ but they have a cause and that
cause is the bottleneck downstream: Because of its invisibility (the bottleneck
may be several kilometers downstream) and the apparent causality (the driver
encounters the effect before the cause) the illusion of a phantom jam appears:
There is always a weakest ink.

• The bottlenecks come in many forms. Their common and defining aspect is a
local decrease of the road capacity, i.e., its maximum throughput without causing
congestions.

• Generally, we have three ingredients to make a jam: High traffic demand, a bot-
tleneck, and a local disturbance, e.g., caused by a lane changing or by the user
clicking on a vehicle.
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Figure 2: Screenshots of the open-system scenarios with different bottlenecks. The onramp rep-
resents a non-flow-conserving bottleneck. The flow-conserving bottlenecks differ in their
strength: The lane closure is a strong inhomogeneity while the uphill grade is a mild one
affecting only the trucks.

• Traffic managing measures such as speed limits try reduce the local disturbances
and thereby prevent/delay a breakdown. One could say that slower is faster or,
regarding ramp metering, less is more.

2.3 Routing Game

In the final ‘deviation’ scenario of the simulator, you can simulate the effects of routing
recommendations issued, e.g., by navigation devices or variable message signs on the
road. Play with the deviation use slider and notice that one can do too much of a good
thing: Instead of a mainroad jam behind the lane closing, traffic on the deviation may
break down. Since the deviation route has a much lower capacity, a congestion on it will

8



take much more time to resolve.
Play the ‘routing game’ and try to control traffic flow by the deviation use slider

with the objective of bringing all vehicles (there is only a fixed number) through the
simulation in the shortest time!

Figure 3: Screenshot of the simulation scenario ‘Routing Game’.

Lessons learnt. Navigation and routing may be tricky since there is a delay between
the decision point (taking the main road or the deviation) and the consequences (traffic
jam on either road). Generally, a feedback control with delays tends to be unstable. In
our case, if you do not watch out carefully, you will cause routing oscillations.
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